ADVANTAGE

- constant, low vibration control
- low-maintenance
- low pressure increase until the valve is fully opened
- frictionless components
- hermetically sealed by a chambered flat diaphragm
- for viscous media and media containing solid particles

UTILISATION

Pressure retaining valves are used where a constant back pressure is required for operating process systems. When installed as a bypass, it can also be used as a relief valve for reducing pressure peaks. It has an almost zerostatic lower body that makes it particularly suitable for use in very high-purity water applications. The variety of available materials covers a wide range of applications.

VALVE FUNCTION

The set spring force presses the diaphragm onto the seal seat. If the system pressure exceeds the operating pressure value, the valve opens.

FEATURES

- Compact construction
- Good control characteristics
- Low maintenance due to uncomplicated design
- $\bullet \ \ Control\ unit is\ hermetically\ separated\ from\ flow\ medium\ by\ EPDM/PTFE-coated\ diaphragm$
- Zero static lower body
- Mounting position depends on flow direction
- Valve mounting with threaded insert on lower body
- Valve can also be adjusted under working pressure

PRESSURE RETAINING VALVE

Data Sheet

FEATURES

 size d(mm)
 16

 DN (inch)
 10

 PN(bar)
 10

 setting range (bar)
 0.5-10

Working Pressure: set pressure plus flow dependent pressure increase (see characteristic curves).

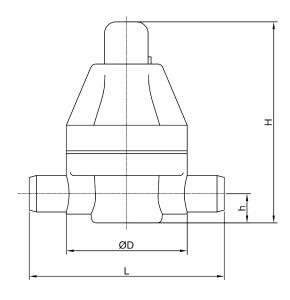
Opening Pressure: DN 10: 0,5 bar

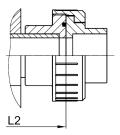
Hysteresis: ≤ 0.5 bar

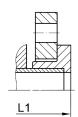
Flow Direction: see arrow direction on the body

MATERIALS

HousingOperating temperatureDiaphragmPVC-U0 to + 60 °CEPDM

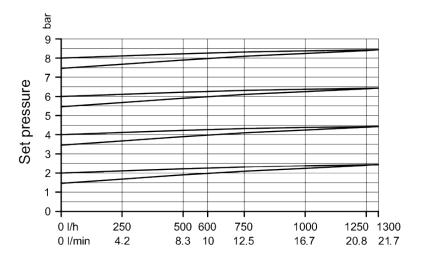

PP - 10 to + 80 °C EPDM / PTFE coated

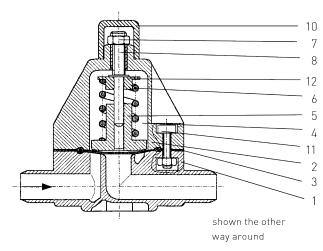

PVDF $-20 \text{ to} + 100 \,^{\circ}\text{C}$


DIMENSIONS in mm

d DN L L1 L2 D h H 16 10 134 140 154 83 20 137

L = standard connection, L1 = with flange, L2 = with screw connection


The pressure retaining valve can be set to a specified opening pressure at our plant if desired.



PRESSURE/TEMPERATURE DIAGRAM

The pressure/temperature limits are applicable for the stated nominal pressures and a computed operating life factor of 25 years. These are standard values for harmless media (DIN 2403), to which the valve material is resistant.

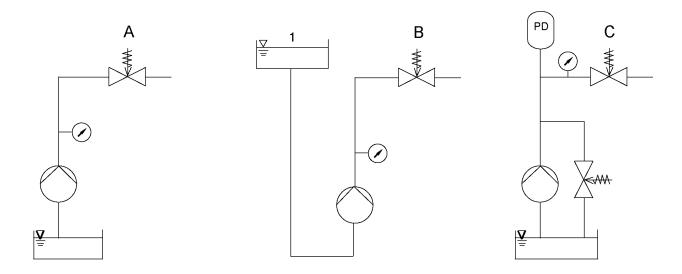
DISMANTLING INSTRUCTIONS

No.	Description	
1.	Valve body	
2. 3.*	Upper valve body	
3.*	Diaphragm	
4.*	Piston	
5.	Compressor	
6.*	Compression spring	
7.	Lock nut	
8.	Adjusting screw	
9.	Cylinder screw	
10.	Сар	
11.	Hexagonal socket-head bolt with nut and covering cup	
12.	Spring plate	

^{*} Parts subject to wear or recommended

- 1. Dismantle the upper valve body:
 - 1.1 Put the valve in an upright position
 - 1.2 Unscrew the cap (14)
 - 1.3 Undo the locknut (7) on the adjusting screw (8) and undo the adjusting screw until the compression spring (6) is fully released
 - 1.4 Remove the covering caps on the screws (11) of the upper body and undo the screws
 - 1.5 Lift the upper body (2) upwards and remove the spring plate (12) and the spring (6)

Assembly is done in the reverse order!


Operating faults and possible causes

Fault	Cause	Correction
Valve not sealed at the diaphragm	Diaphragm not pressed on hard enough	Tighten screws (10)
Pressure falls below the set value	Piston base (2) not sealed	Check piston and piston base seal and possibly replace. Dismantle lower body 1.1-2.4
	Diaphragm (3) not sealed	Replace diaphragm, dismantle lower valve body 1.1- 2.4
Medium leaks out at the adjusting screw	Diaphragm is faulty	Replace diaphragm, dismantle lower valve body 1.1-2.4

Applications

A = generation of a constant working pressure

B = use at high inlet pressure

C = optimal solution for the reduction of pressure surges with overflow valve to protect the system

